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The ring cleavage of 4,5-ethylenedioxy-1,3-dithiole- and
-1,3-diselenole-2-thiones, followed by the reaction with 4,5-
bis(methoxycarbonyl)-1,3-diselenole-2-one took place under
the phosphite-mediated cross-coupling conditions to afford 2-
thioxo- and 2-(selenoxomethylidene)-1,3-diselenoles. The struc-
ture of 4,5-bis(methoxycarbonyl)-2-(thioxoalkylidene)-1,3-dise-
lenole was confirmed by X-ray analysis.

There has been considerable interest in 1,3-dithioles and
1,3-diselenoles as synthetic blocks for constructing organic met-
als, organic ferromagnets, and other functional organic systems.1

Thus, 2-methylidene-1,3-dithioles and dihydro-TTF derivatives
have been employed as the donor units for highly conductive or-
ganic metals,2 and a number of tetrathiafulvalene (TTF) and tet-
raselenafulvalene (TSF) derivatives containing alkylidene-1,3-
dithiole and -1,3-diselenole units have been prepared to improve
donor properties of TTF and TSF.1 We recently found that the
cross-coupling of 4,5-ethylenedioxy-1,3-dithiole or -1,3-disele-
nole-2-thiones (1 or 2) with 4,5- bis(methoxycarbonyl)-1,3-di-
selenol-2-one (3) using triethyl phosphite produces 2-(thioxome-
thylidene)- and 2-(selenoxomethylidene)-1,3-diselenoles (4 or
5) (Scheme 1). We report here the anomalous ring cleavage
and coupling pathway, together with related reactions.

The cycloaddition of 3-thioxo-1,2-dithioles to acetylenedi-
carboxylate was reported to produce 2-(thioxoalkylidene)-1,3-
dithioles.3 Since this cycloaddition can be applied for the synthe-
sis of both TTF vinylogues and useful sulfur-rich molecules,
many related reactions have been reported until now.4,5 In addi-
tion, tetrathiafulvaleno-quinone and -thioquinonemethides have
been synthesized by Sugimoto et al. and the conducting and
magnetic properties of their radical salts have been recently re-
ported.6 Taking into account the utility of 2-(thioxoalkyl-
idene)-1,3-dithioles, 2-(selenoxomethylidene)-1,3-diselenoles
can be expected to have potential multi-functionality. However,
the cycloaddition methodology is unable to apply for the synthe-
sis of the corresponding 1,3-diselenole derivatives, because of

the difficulty in preparing 3-selenoxo-1,2-diselenoles.
The phosphite-mediated cross-coupling of a 1,3-dithiole-2-

thione containing an electron-donating substituent with a 1,3-di-
thiol-2-one containing an electron-withdrawing substituent re-
sults in the formation of the corresponding TTF derivative in a
good yield as compared with a similar reaction of a 1,3-di-
thiol-2-one containing an electron-donating substituent with a
1,3-dithiole-2-thione containing an electron-withdrawing sub-
stituent.7 By considering this selectivity in the phosphite-mediat-
ed cross-coupling, together with the reported procedure,8 we car-
ried out the synthesis of ethylenedioxy-1,3-diselena-10,30-
dithiafulvalene diester (6). The reaction of 1 (1 equiv.) with 39

(1.5 equiv.) in the presence of P(OEt)3 (10 equiv.) in refluxing
toluene for 2 h afforded 6 in 37% yield, together with an unex-
pected product 4 in 30% yield (Scheme 2).10 In a similar manner,
the P(OEt)3-mediated reaction of 1 with 3 in refluxing benzene
for 8 h gave 4 and 6 in 30 and 29% yields, respectively. In the
P(OEt)3-mediated coupling of 3 with 2, which was prepared
from 3,4-dibromodioxene in moderate yields,11 the reaction in
refluxing toluene or benzene led to 5 in 19 or 52% yield without
the formation of the TSF derivative 7. It was reported that the
phosphite-mediated coupling of 1 produced BEDO-TTF (8) in
low yields,12 although the corresponding selone afforded 8 in
moderate yields.13 Under our reaction conditions, a solution of
1 in P(OEt)3 (4 equiv.) was heated at 65 �C for 8 h to yield 8
(37%), together with 9 (15%). Thus, the formation of 9 sup-
pressed the yield of 8. The products 4, 5, and 9 are stable crys-
talline compounds, and can be stored at room temperature with-
out decomposition.
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Scheme 1. Cross-coupling of the thione (1 or 2) with 3 using
P(OEt)3.
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Scheme 2. The reaction of the thione (1 or 2) with 3 in the pres-
ence of P(OEt)3. Reagents and conditions: a) P(OEt)3, toluene,
reflux; b) P(OEt)3, benzene, reflux; c) P(OEt)3, 65

�C.
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2-(Thioxomethylidene)-1,3-diselenole derivative 4 was re-
crystallized from CCl4-methanol to afford orange single crystals.
To determine the structure of 4, the X-ray analysis was carried
out.14 As shown in Figure 1, the crystal lattice includes four crys-
tallographically independent molecules, i.e., two pairs of the di-
merized molecules (A���B and C���D), which form a column
structure along the c-axis. The 2-thioxomethylidene units of
these four molecules are almost planar, and the face-to-face dis-
tances A���B, B���A0, C���D, and D���C0 are 3.84, 3.90, 3.68, and
4.07 �A, respectively. The four molecules show intramolecular
Se���S contacts [Se(1)���S(1) 2.950(6), Se(3)���S(2) 2.936(6),
Se(5)���S(3) 2.946(6), and Se(7)���S(4) 2.941(6) �A], which are
much shorter than the Se���S van der Waals distance (3.85 �A).
In addition, there are intermolecular Se���Se contacts
[Se(2)���Se(3) 3.979(3) and Se(5)���Se(8) 3.977(3) �A], which
may contribute to form the column structure.

Interestingly, 4, 5, and 9 produce the corresponding cation
radicals. Thus, these molecules show an irreversible redox wave
in the cyclic voltammetric analysis [4: Ep,ox ¼ 0:77V, 5: Ep,ox ¼
0:72V, and 9: Ep,ox ¼ 0:36V vs Fc/Fcþ].15 The cation radicals
derived from 4, 5 and 9 may be stabilized by both the 1,3-dise-
lenole or 1,3-dithiole ring and the vinylic oxygen.

Although the reaction mechanism for the formation of 4, 5,
and 9 is not yet clear, the initial attack of P(OEt)3 may take place
on the thiocarbonyl group in 1 or 2 to cleave the adjacent C–S or
C–Se bond. The phosphite mediated cross-coupling of the ring-
cleaved intermediates with 1 or 3 results in the formation of 4, 5,
or 9.
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Figure 1. Crystal structure of 4. Dotted lines indicate the
Se���Se and Se���S short contacts.
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